isomorphic spaces - significado y definición. Qué es isomorphic spaces
DICLIB.COM
Herramientas lingüísticas IA
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es isomorphic spaces - definición

Computably isomorphic

Fascial spaces of the head and neck         
  • The four compartents of the right masticator space. '''A''' Temporalis muscle, '''B''' Masseter muscle, '''C''' Lateral pterygoid muscle, '''D''' Medial ptaerygoid muscle, '''E''' Superficial temporal space, '''F''' Deep temporal space, '''G''' Submasseteric space, '''H''' Pterygomandibular space, '''I''' Approximate location of infratemporal space.
POTENTIAL SPACES
Submaxillary space; Perimandibular spaces; Perimandibular space; Perimandibular space infection; Masticator space
Fascial spaces (also termed fascial tissue spaces or tissue spaces) are potential spaces that exist between the fasciae and underlying organs and other tissues. In health, these spaces do not exist; they are only created by pathology, e.
Pterygomandibular space         
FASCIAL SPACE OF THE HEAD AND NECK
Pterygomandibular spaces
The pterygomandibular space is a fascial space of the head and neck (sometimes also termed fascial spaces or tissue spaces). It is a potential space in the head and is paired on each side.
Southern Spaces         
JOURNAL
South. Spaces; South Spaces; 10.18737; 10.29308; Southern spaces
Southern Spaces is a peer-reviewed open-access academic journal that publishes articles, photo essays and images, presentations, and short videos about real and imagined spaces and places of the Southern United States and their connections to the wider world. The intended audience includes researchers and teachers, students in and out of classrooms, library patrons, and the general public.

Wikipedia

Computable isomorphism

In computability theory two sets A ; B N {\displaystyle A;B\subseteq \mathbb {N} } of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function f : N N {\displaystyle f\colon \mathbb {N} \to \mathbb {N} } with f ( A ) = B {\displaystyle f(A)=B} . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility.

Two numberings ν {\displaystyle \nu } and μ {\displaystyle \mu } are called computably isomorphic if there exists a computable bijection f {\displaystyle f} so that ν = μ f {\displaystyle \nu =\mu \circ f}

Computably isomorphic numberings induce the same notion of computability on a set.